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Abstract—Previous considerations by asymptotic expansion procedures of the relation between elasticity
theory results and thin-shell theory results for the case of rotationally symmetric deformations of an
edge-loaded semi-infinite circular cylindrical shell are supplemented by an analysis of this problem for a shell
possessing a limiting-type orthotropy, such that transverse normal strains vanish identically. It is shown that
assuming this kind of orthotropy has the important benefit of allowing the derivation of exact expressions for
the edge zone solution contribution, when such exact expressions are not possible for the problem of the shell
with more general properties of the material. One result of the present analysis is an answer to the following
question. Given a shell with arbitrarily prescribed edge displacements (compatible with the assumed type of
orthotropy), what is the asymptotically exact form of the corresponding conditions for this same problem,
treated within the framework of two-dimensional thin-shell theory?

INTRODUCTION
We return once more to the problem of rotationally symmetric deformations of a semi-infinite
circular cylindrical shell as the simplest non-trivial example of the relation between three-
dimensional elasticity-theory analysis and two-dimensional thin-shell-theory analysis. The first
paper on this subject[1] considered the problem of the asymptotic determination of a class of
“interior” solutions for the given three-dimensional boundary value problem, and the derivation
therefrom of a system of two-dimensional shell-theory equations including the formulation of
shell-theory boundary condition statements from given three-dimensional elasticity-theory
statements of such conditions, for the case that these conditions were stress boundary conditions.
A subsequent paper by Reiss[2] extended this work by considering complete asymptotic solutions,
including interior solutions and “edge-zone” solution contributions. The results obtained in this
manner confirmed the conclusions in [1] in regard to the problem of two-dimensional shell theory,
while at the same time supplying significant additional insights in regard to the nature of the relation
between two- and three-dimensional theory, with these insights having meanwhile been extended
and generalized in important ways by various other workers, in particular by Goldenweiser[3].

One of the difficulties encountered in the use of an edge-zone solution contribution, as done
by Reiss[2], consists in the fact that the relevant two-dimensional boundary value problem for a
bi-harmonic function defined in a semi-infinite strip cannot, for some important cases including
the case of pure traction conditions and of pure displacement conditions, be solved in closed
form, and to the extent that this is the case the asymptotic results which are obtained remain
approximate rather than exact.

Given the impossibility of a closed-form solution of the relevant bi-harmonic problem, as
well as the apparent absence of results for the case of pure displacement edge condition cases,
we have recently considered the complete problem by combining interior asymptotic expan-
sions, Rayleigh-Ritz type edge-zone solution contributions, and upper and lower bound
formulas through use of the principles of minimum potential and complementary energies(4).
The principal resuits of this analysis consisted in the derivation of upper and lower bounds for
the values of influence coefficients involved in the solution of the semi-infinite circular
cylindrical shell problem with prescribed edge tractions or prescribed edge displacements. All
of these bound results were such as to imply the determination of exact resuits for the solution
of the three-dimensional problem by means of two-dimensional theory, insofar as the leading
terms in an expansion of the solution of the three-dimensional problem in powers of wall
thickness k to shell radius ratio a were concerned. We also determined supplementary terms for
such an expansion, of relative order h/a (including terms of order (h/a)"? which are encoun-
tered for some classes of edge conditions), with these supplementary bound terms being such
that in some cases there was coincidence between upper and lower bound results so that, in
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effect, a determination of exact resuits, up to terms of relative order h/a, was accomplished.

In order to understand the meaning of these resuits, as well as the significance of the
analysis which follows it is convenient to interpret the leading-term results as exact results for
an infinitely-thin shell (i.e. for a shell for which hA/a -0), with the supplementary terms
representing the effects of finite thickness. There are altogether three distinct effects of finite
thickness. The first of these is a geometrical effect, having to do with the change of width of
shell elements with distance from the middle surface (so that this effect is absent for the special
case of a flat plate). It is known that this effect is taken account of properly (assuming absence
of the other two) in a refined two-dimensional shell theory associated with the names of Fliigge,
Lurie and Byrne The second effect is the effect of transverse normal stress deformability
{which is absent for the case of a limiting-type orthotropic material unable to sustain transverse
normal strains). It has carlier been shown that this effect is of the same order of magnitude as
the geometrical FLB effect[1], and our recent work[4] indicates that for some classes of edge
conditions this effect comes out to be of relative order (h/a)'? (without these terms being of
numerical significance, however, in comparison with the co-existing h/a-order effects).

The third of the effects of finite thickness is the effect of transverse shear deformability.
This effect too comes out to be of relative order h/a. We are not concerned here with the
consequences of this effect, in regard to the order of the differential-equation system and to the
number of the associated boundary conditions, as discussed most simply in recent work dealing
with the subject of plates{5]. Rather, we are concerned with this effect from the point of view
of its relative numerical dominance in comparison with the other two, as revealed by our upper
and lower bound calculations [4].

Having previously obtained upper and lower bound resuits for the three effects of geometry,
transverse normal stress deformability, and transverse shear deformability, with these three
effects being additive up to orders of magnitude which are of primary interest, we now
undertake an asymptotic analysis of two of the three effects, these being the effects of
transverse shear deformability and of geometry. Our analysis is based on recognition of the fact
that it is possible to derive exact solutions for the two-dimensional semi-infinite strip problem
governing the edge-zone solution contribution, upon assuming a limiting-type orthotropy in
such a manner that transverse normal strains vanish identically.

Having the existence of these exact solutions for the edge-zone contributions involved in
the asymptotic expansion procedure, we are now in a position to verify and, in principle, to
refine the results of our upper and lower bound analysis. Beyond this, we are able to obtain
results for types of boundary conditions which do not fall within the scope of the indicated
bound solutions. To mention a specific example, our analysis permits us to solve a problem
which has long been of interest to us but for which until now no rational solution has come to
our attention. The problem is as follows. Given a semi-infinite circular cylindricai shell, with
arbitrarily prescribed edge displacements as loading conditions. To be determined is the
asymptotically exact form of the corresponding conditions of the first-order interior solution
contribution, to wit, the appropriate form of the corresponding boundary conditions for this
same problem, treated within the frame work of standard two-dimensional thin shell theory.

FORMULATION OF THE PROBLEM
We take as differential equations for symmetrical deformations of circular cylindrical bodies a
system consisting of the equilibrium equations

’ax.x+(rf).r=0! rrx+(ro;),— oy =0, 2.1

in conjunction with stress~strain (dispiacement) relations of the form

u =(7,—W.__v J, y_=a'!-vcr,_v (43
< E ’EM’ r E rEmy
a, o+ 0y T
V, ==V, U,+V, ==, .
W E’ r Em k4 X G (22)

where E,, = (EE,)'?, with positive E, E, and G, and with the additional strain energy positive-
definiteness conditions ¥*< 1 and 27> <1-p.
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The system (2.1) and (2.2) is to be solved in the region 0 < x <, a— c s r< a+ ¢ subject to
face boundary conditions
r=azc: o, =0, =0, 2.3

subject to edge boundary conditions “at infinity” which for all cases are taken in the form
x=o =0, v=0 24

and subject to edge boundary conditions at the loaded edge of the shell, of the form

u, =i, OF 0,=0,
x=0: { ap or o; =6y 2.5
v=0, or =+,

with the r.h.s. in these four relations being prescribed functions of 7, subject only to the
restriction that [$*5(ra)d, dr=0.

Within the frame work of the above class of three-dimensional problems (which because of
the assumed absence of any é-dependence of the solutions formally reduces to a class of
two-dimensional problems) we are particularly concerned in asymptotic reductions to two-
dimensionality (with this reduction here formally to one-dimensionality) for the determination
of the weighted stress averages

M= [ aeir-aa o=[" darar, @6)

and for the determination of displacement measures such as
V=0(x,0), B=u,x0), 2.7

with these reductions being of technical significance for “sufficiently small” values of the wall
thickness-diameter ratio c/a of the shell.

In association with the derivation of a system of two-(here one-) dimensional differential
equations for the quantities M,, Q, V, B it is necessary to also derive a system of suitable edge
conditions, involving the functions & ., &, &, ¥ which appear in eqns (2.5). One expects, and this
has been shown to be true in {1] and 2] that insofar as the traction condition portions in (2.5)
are concerned the equivalent lower-dimensional edge conditions are of the form

x=0: M.=M, Q=0, (2.82)

with M, and @ defined in terms of &, and 7 in accordance with eqns (2.6).

One also expects, and this is generally considered to be correct, that when the displacement
condition portions in eqns (2.5) are such that ii, as well as © are independent of r, then the
equivalent lower-dimensional edge conditions are of the form

x=0: V=5 B=i, (2.8b)

We will, in what follows, re-confirm the asymptotic validity of the above expectation, within the
frame work of the restrictions associated with the nature of the analysis which is here carried
out. Over and above this result, however, we will establish the form of the edge conditions for
“effective” measures V and B, not necessarily identical with these measures as defined in eqns
(2.7), which are valid in the event that &, and & are other than independent of 7. An example of
this nature which will be considered explicitly is the case where i is assumed to be proportional
to (r— a)® in place of the usually assumed linear distribution.

DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS FOR

TRANSVERSELY INEXTENSIONAL DEFORMATIONS
The case of transversely inextensional deformations is given upon setting

E =w (ERY
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in the stress—strain relations (2.2). These may therewith be written in the form

Eu,=o,-vay, Er'v=gy-vo,

v,=0, Gu,+vy)=r, (3.2)

where it will be assumed from here on that E, » and G are independent of x and r.
Our first conclusion is now that the transverse displacement component does not vary
across the thickness,
v=V(x) (3.3)

and that, associated therewith, the transverse normal stress component o, assumes the
character of a reactive quantity.

In order to soive the remaining boundary value problem, we begin by satisfying the first of
the equilibrium equations (2.1) by means of a stress function ¥, in the form

ro, =aV¥ , =~q¥,, (3.4)

where the factor a on the r.h.s. has been introduced to make the writing of some of the
developments which follow somewhat more convenient.

We next use the second of the stress-strain relations (3.2), in conjunction with eqn (3.3) in
order to write for the circumferential normal stress,

roe=va¥ .+ EV. (3.5)

With the above expressions for o, and 7, we obtain from the second equilibrium equation
in (2.1) as an expression for the transverse normal stress ¢, which satisfies the condition of
vanishing o, for r=a-c¢

o, =a f (¥ o+ v~V ) dr + EV f rdr. (3.6)

The condition that o, must also vanish for r = a + ¢ gives as one of two equations connecting
the two functions ¥(x, r) and V(x)

f (w,,+-‘riw,,)dr+-53‘5m“”=o. 37

a~c a-c¢

A second equation connecting ¥ and V follows upon expressing u,, in terms of ¥ and V in
accordance with the last relation in (3.2), in conjunction with (3.3) and (3.4), as

—_y.-a¥,
u.r- V,x r G 1 (38)
and by combining this result with the first relation in (3.2), written in the form Eu, =
0y, — VO, With o, and o, taken from eqns (3.4) and (3.5). The ensuing differential equation may
be written in the form

1-»* ¥l r v o
. (w,,,- r)+Gw‘,+av,,+mv-o. (3.9)

Having eqns (3.7) and (3.9) it remains to state boundary conditions in terms of ¥ and V, in
accordance with the remaining face boundary conditions in (2.3), which concern 7, and in
accordance with the edge conditions as stated in eqns (2.4) and (2.5).

We begin by satisfying the edge condition at infinity by stipulating

Y(x, r)=0, V(o) =0. (3.10)
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-

With this, and with observation of the relation [;=f(r/a)a, dr = 0, the face boundary conditions
7(x, a £ ¢) = 0 take on the form

¥(x,axc)=0 3.11)

Finally, the conditions (2.5) for the loaded edge of the shell become

-a—g-a:..‘ ‘—l’&.’:—-_é_x
Vet G U or S°E
x=0
V=¥V  or [ ¥, dr=-Q. G.12)
a—¢

We note that in writing the second set of conditions in (3.12), we have taken account of the fact
that the assumed properties of the material require that the prescribed transverse displacement
& be independent of 7 and so may be written, in consistent fashion, as V, and that at the same
time this specialization of properties implies a sensitivity of the medium to the resultant Q of
the edge stresses 7 only, rather than to the details of a prescribed 7-distribution.

STIFFNESS AND FLEXIBILITY COEFFICIENTS
In accordance with our earlier work in {4], we define general stiffness coefficients K, with
reference to the problem of prescribed edge displacements, for the case that i, = - B, and
V = — V,, by means of relations of the form

M, (0)= Kapﬂo = KBVVm Q(o) = KyyV,~ KVﬂﬂoo 4.1)
where K vg = ng.

At the same time we define a specialized system of such coefficients for mixed edge
condition problems, as follows

M,(0) = KgBy, (when 7 =0),
Q) =KyV, (whengd,=0). 4.2)
Insofar as the problem of prescribed edge tractions is concerned, we have earlier[4] defined

flexibility coefficients C with reference to traction distributions (rfa)é, = 3My/2¢*) (r— a) and
(rla)7 = (3Qul4c) [1 - (r - a)*/c?], and weighted edge displacement averages

a+c )
pi=-2 [ - .o

4c Ja-c
3 a+e PP
Ve=-o ] ) [x J’—C,‘—"—] vdr, 43)
in the form
B? = CroM, + CrgQs, V3 = CouM, + CooQo, 4.4

with these relations being “nearly” the inverses of eqns (4.1), upon the identifications 8% = 8,,
V: = V,, M;(0)= M, and Q0) = Q..

The principal aim in (4] was the deduction of upper and lower bounds for the coefficients K
and C, with these bounds depending on the geometrical parameter c/a, as well as on the
materials property parameters E, E/G, E/E,, v and v. Among the characteristics of these bound
relations the following are noteworthy.

(1) In the limit ¢/a -0, our upper and lower bound values coincide with each other and with
the corresponding values of what may be called first-approximation classical thin shell theory
results.
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(2) For sufficiently small finite values of c/a our bound values involve additive terms of
relative order (c/a)"” and of relative order cfa. The terms of order (c/a)"? represent transverse
normal strain effects alone, while the terms of order ¢/a represent transverse normal strain effects,
as well as transverse shearing strain effects, and also geometrical effects of the Fliigge-Lurie-
Byrne type. The numerically dominant of these three effects is the transverse shearing strain effect,
even though this effect does not contain any.(c/a)"-contributions.

Insofar as the determination of stiffness and flexibility coefficients is concerned the
analysis enables us to obtain exact values of all contributions of relative orders (c/a)"? and ¢/a
(as well as exact values of contributions of higher order in ¢/a should we so desire) subject only
to the restriction E, =». While it is possible to do this for the entire set of ten coefficients
defined in eqns (4.1)~(4.4), the necessary analysis will be carried out in what follows only to the
extent of obtaining expressions for Kgg, Kvg and Kp.

THE NON-DIMENSIONALIZED BOUNDARY
VALUE PROBLEM

We introduce a non-dimensional axial coordinate ¢ and 4 nondimensional radial coordinate
7, measured from the middle surface of the shell, by writing

x=b§ r=a+cn, 6.n

with b being in the nature of a characteristic length, to be chosen presently.
We further set
(1= =E¥,g(&n), V=V.F(§), (5.2)

where ¥, and V, remain to be chosen, and we define dimensionless parameters p and a in the
form
p=cla, (1-va’=EG. (5.3

Indicating now differentiations with respect to £ and 7 by primes and dots, respectively, the
two differential equations (3.7) and (3.9) for ¥ and V take on the following form

[ : 1+p ]-
‘l’of_l [;28 +(l+rm) g]dn+ Vo [(1 vz)plnl__pF 0, (5.4)
Bty 2E .] [c2 ' ]=
\I’o[g l+png ta';ag +V, ‘l';z(l+p1y)F"+1+mF 0. (5.5

At the same time the face boundary conditions (3.11) become
g&x1)=0, (5.6)
and the edge boundary conditions at infinity become
g(®,m)=0, F(®)=0. (5.7

Insofar as the boundary conditions (3.12) at the loaded edge are concerned, we will limit
ourselves in what follows to the consideration of just two of a total of eight possibie cases, both
of them concerning problems with prescribed axial displacements as expressed in terms of the
slope function @, with the other condition being the displacement condition of vanishing V, or
the traction condition of vanishing Q. Expressed in terms of g and F this set of conditions
takes on the form

2

Y, a
b

' Yo oun=_
l+mg(0’ m+ b F0) #.n (5.8)

1
F0)=0 or J'_l g(0, 7)dn =0. (5.9)
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Expressions for the stresses o, 7, oy, and for the stress resuitant Q and the stress couple M,
follow from egns (3.4), (3.5) and (2.6) as

1-v* ¢ 1+pn’ T=—T-—v!Tl+p11’ (5.10)
- gY_F E ¥, »
T Tt 1= ¢ 1+pn G.1)
t 1
M,-—lﬁf—;i _ gdn, _ g (5.12)

We list additionally as expression for the circumferential stress resultant

- a+c - l_tﬂ _EW J;
Ne= [ avar EVipln (T2 F-22 _‘—’%%, (5.13)

a—-c

and we shall not concern ourselves, in what follows, with the complementary expressions for o,
and M,.

INTERIOR AND EDGE ZONE SOLUTION
, CONTRIBUTIONS

We accept as known the fact that the solution to be obtained will, for sufficiently small
values of p, be composed of two contributions, one of them being an “interior” contribution g,
F,, with characteristic length b = b, = (ac)'” and the other an “‘edge zone” contribution g,, F,,
with characteristic length b = b, = c. We note that in this way F; = Fi(§) and F, = F,(£,), etc.
but we shall refrain from making the distinction between ¢ and £, explicit, as this will cause no
difficulty as the analysis proceeds. With £, £ and 5 defined in this manner, and in view of the
form of the differential equations and boundary conditions for g and F, we are in a position to
stipulate the basic order of magnitude relations

8is e Ea Fn 8;", g;s 8;, g,a F,n F’¢= O(l)’ (6-1)

and we shall write, in place of eqns (5.2), so as to make the distinction between the two solution
contributions explicit

(- W =E¥g+¥g) V=VF+V/F, 6.2
with the form of the two differential equations for the set g, F; and for the set g, F, being

distinct, to the extent that this is required to account for the difference between b; and b,
Setting b = b; = (ac)'?, we obtain from eqns (5.4) and (5.5)

_l, [8'-’+(—1f%:g:]dn+ Vip? [l;"zln%{-ﬁa]w, ©3)
‘P.’[E: 1—_'_%81*-:1 pg"]+ V,p[(l+p11)F"+.i.F‘,]=o_ 6.4)

Setting b = b, = ¢, we obtain instead

wf[ (Hm) ]dn+v.p’[';”21n}-’_'—§ﬁ,]=o, 6.5)
v, [g;'—ﬁﬂp-;g,'+a=gc] +V, [(1+pn)F;+-1-£%F,]=O. (6.6)
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In view of the difference between £ and ¢,, the functions g; and g, must individually satisfy
the face boundary conditions

n=x1 2=0, 2.=0, 6.7)
and for the same reason the edge conditions at infinity (5.7) must be satisfied.individually,
f=x =0, g =0, FF=0, F,=0. 6.8
With g; and F, and g, and F,, sofar being subject to a system of uncoupled requirements,
there remains only the system edge loading conditions (5.8) and (5.9) to accomplish the
necessary coupling for the determination of the two sets of functions. We find that eqn (5.8),
again with b; = (ac)'"? and b, = c, takes on the form

az

T+pm [¥:i0'?250, n) +¥.840, M} + Vip'? Fi{0) + V, Fi0) =~ cii,,, 6.9
and eqns (5.9) take on the form
ViIF(0)+ V.F.(0)=0, (6.102)
or
[ i si0. m+ ¥.5:0. midn =0. 6.10)

Having the relations (6.2)~(6.10) our next step is an Zppropriate disposition of the four scale
factors ¥, ¥,, V., V. We begin by observing that in order to be abie to satisfy the face
boundary conditions (6.7) in such a way that not only the functions g; and g, but also the
functions F; and F, are involved it will be necessary ‘o have the terms with g°* in eqns (6.4)
and (6.6) of the same order of magnitude as the terms with F” in these equations. Accordingly,
we set

\Pg = pVg, ‘I', = V,. (6.11)

Introduction of (6.11) into the edge conditions (6.9) and (6.10) then gives further

2
= 840, 73)] =—cil p 6.12)

2
o112 a ’ J
Ve [ Fio+ 5 g0, m |+ v [ Fio+ 1

with (6.10a) remaining unchanged, and eqn (6.10b) assuming the form
1
[, tvie* g0, m+ Vigio, midn =o. 6.13)

Having eqn (6.12), we now impose the requirement that both interior and edge-zone solution
contributions participate in the satisfaction of this non-homogeneous edge condition. This
means that we must have

Vip'*=V,. 6.14)

Finally, we introduce a weighted average, 8, of the variation of edge rotations in thickness
direction by writing
i,=-pBs(n), (6.15)
with
' 2 4 3 2
[La-msman=3  p=-3[ a-mu,an (6.16)

(so that 8 = B, when i, = — 8, = const).
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With (6.14) and (6.15) and with the further stipulation that
V.=cB, ©6.17)

the nonhomogeneous edge condition appears now in the form

2 2
Fi0)+ 755 810, m)+ FUO+ 17— 240, m) = s(m) (6.18)

and the homogeneous edge conditions (6.13) and (6.10a) become
F(0)+p'F0)=0, (6.192)

or

1
[ o0, m)+ 820, 1 dm =0. 6.19)

Equations (6.18) and (6.19) are to be used in conjunction with the consequences of
introducing (6.11) into eqns (6.3)~(6.6), that is, in conjunction with two systems which may be
written in the form

! 1-¥ 1+p ' ougd
Ig:dn+—ln - E+pj L =0
-1 P 1-p -1(1+pm) (6.20)
.- gi—vE
8 +F'i+p[a’g'.’+nF.‘- 1+:n]=0’
and
! dg . - 1+p
[ gran+p[[ Bdrl=finlter ]
-1 (1+pm) [ 6.21)
“ 2.n g png]
g¢+ag.+F':+p[ T+ pn +nFe+ e 0.

The solution of (6.20) and (6.21), subject to the edge conditions (6.18), (6.19) and (6.8) and
subject to the face boundary conditions (6.7) is to be introduced into eqns (6.2) for ¥ and V.
Upon taking account of the relations (6.11), (6.14) and (6.17) we have then

(1= ¥ = EcB(g. +p"g),  V=(ca)”B(F.+p'?F,). (6.22)

Furthermore, introduction of ¥ and V from eqn (6.2) into eqns (5.10)=(5.12) gives as expres-
sions for stresses

_ g +p'"s 8.+ pg)

7=T1- l+p'q hoT= —E%l+p'q’ ©23
- v &+p"g p"’F-+PFe]

e EB[I—V 1+pn T+pm [ 6.24)

and as expressions for the stress couple M, and the etress resultant Q,

1

M=~ 25 [ g+ og)dn, ©25)
1

o=-Z5 [ @+ompan, 626

S§S Vol. 14, No. 1—C
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We note that while the above formulas for M, and Q give the impression that the edge-zone
solution contribution g, makes a dominant contribution to these quantities—which, if true
would detract much from the significance of conventional two-dimensional shell theory—we
will find shortly that *; g, dn comes out to be of a smaller order of magnitude in p than p' [,
g dn, so that no problem of this sort does, in fact, arise.

Beyond this we may also note that the differential equation for g, in (6.21) is effectively of
second order, in place of a fourth-order bi-harmonic problem which is encountered in the
analysis of the corresponding problem for an isotropic homogeneous shell medium. It is this
difference in the order of the differential-equation problem for the edge-zone solution contribu-
tion which makes possible an exact solution of the complete problem for the case of the
transversely inextensional medium.

PARAMETRIC EXPANSIONS FOR INTERIOR AND
EDGE-ZONE SOLUTION CONTRIBUTIONS

An inspection of the differential equations (6.20) and (6.21), in conjunction with the
boundary conditions (6.7), (6.8) (6.18) and (6.19) indicates the possibility of an expansion of the
solutions in powers of the parameter p'f. Writing

F=Fo+p"* Fi+pF+..., g=go+p"g1+pga+..., a.n

and observing that (1/p) In [(1+ p)/(1 - p)] =2[1 +p*/3+...], we have then from eqns (6.20),

1
f gadn+20-1)F, =0, gn+Fh=0; n=0,1, a2
-1

i H
f ghdn+2(1-F, =~ "f Bin-24d7;
n -t n=231, (7.3)

in + Fiu= gin-2— B*gin-y~ nF in-2— vFip-1;

with analogous relations for n =4, 5, ... which will not be utilized in what follows, and eqns
(6.21) give in the same manner

i

Lﬂ’fndn=0, Bnt &g+ Fu=0; n=01, 7.4
1

[ Gadn=0, g+t Fu=gan-1Fas 8223 (9

1 1
L gndn=—-v L Bt =21 = 1) Fpy; n=4,5. 7.6)%
The associated boundary conditions which follow from (6.7) and (6.8) are

=%l 8 =0, 8 =0, a.mn
f = 0] 8in = 0, Ben = 0, E’I =0, Fm =0. (7~8)
The coupling between interior and edge zone contributions will be effected in the process of

satisfying the boundary conditions for the loaded edge of the shell which follow from (6.18) and
(6.19) in the form

Finl0) + Fl0) + a’gol0, 7).= s(n), (7.9a)
Fs(0)+ Fu(0) + a’2(0, 1) = 0, (7.9b)

Fip(0)+ Fiu(0) + @’2'(0, 1) = a’ngin-2(0, n) — a’gin-2(0, n);
n=273, {7.9¢)

tExcept for the form of (6.19a) this expansion would be in powers of p, rather than p'”%. This means that when (6.19b)
applies, one-half the terms in our expansion will vanish automatically.

It is in this one place that we require equations for 7 = 4, 5, in order to complete the determination of our expansions
terms up to n =3,
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and
E0(0)=07 En(0)+F¢u-l(0)=o; n= 19 29 3y' . (7'10)
or
1
f g0 mdn=0; n=0,1i, (7.11a)
-1
1 1]
f gm(®, M dn=- f GO mdns m=23,.... (7.11b)

DETERMINATION OF INTERIOR SOLUTION
CONTRIBUTION TERMS

We begin by determining the interior solution contribution to the extent that this is possible
without bringing in the form of the associated edge zone solution contribution. In doing this we
will arrive at a set of ordinary differential equations for the dimensionless deflection functions
F,,, with F,, being equivalent to the corresponding function in accordance with conventional
two-dimensional shell theory, with F;, accounting for the effect of deviating from the ‘“‘con-
ventional” assumption of an n-independent edge slope function s(n), and with F,; accounting
for the effects of transverse shear deformation and of element width changes in the same
manner as previously found in{1].

We complement these results by the discovery of the complete system of boundary
conditions for F,, for an arbitrarily prescribed edge siope function s(n), through use of the
differential equations for the edge-zone solution contributions, but without having to determine
any part of the edge-zone portion of the solution of the complete problem.

Considering the fact that F,, = F,,(£), we find from eqns (7.2), in conjunction with the
appropriate statement in (7.7) the simple result

2
g;,.=l—le}',,, FIV+31-4)F,=0; n=0,1. 8.1)

In the same way we find from eqns (7.3) and (7.7), and with (1 - 1)a’ = E/G,

—m? . S a2 —6n’+
gin=l ﬂFh+n3" Fh—2+("l 7 _E3 6% n‘)Fm—z,

2 2 6 82)
FIY +3(1- »)F, = (%— 2) Fisi n=23.

We now turn to the form of the boundary conditions for the functions F,. We find from
(7.8) the obvious requirements of vanishing F;, (and F;,) for ¢ ==. As far as conditions for
£=0 are concerned, we have as one of the two conditions for F,, for one of the two cases
considered in (7.10) and (7.11), that F,(0)=0. The other conditions, in accordance with
(7.9)(7.11) all appear to require the simultaneous determination of F,, and g, We will show
next how to avoid this complication to a significant extent.

DERIVATION OF BOUNDARY CONDITIONS FOR F, WITH OR WITHOUT
INVOLVEMENT OF EDGE-ZONE SOLUTION CONTRIBUTION

We begin by observing that eqns (7.4) and (7.5), in conjunction with the conditions
Zen (0, M) = gon(®e, 1) = 0 imply the relations

1 1
[ e man={ gueman=o, ©.12)

for n =0, 1, 2, 3. Furthermore, from (6.21)

[ gdeman=a- [ Fuerac 9.16)
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With the help of (9.1), and through use of the first relation in (8.1) and (8.2), we may write
the set of conditions in (7.10) and (7.11) in the form

F,0)=0. or Fin(0)=0, (9.2a)
Fi(0)=-F,,(0), or F}{(0)=0, 9.2b)

Ful®)= =Faui®, o F50) = ($£-7) Fu®

-3(1-4) f ) Fa2§)dé;  n=2,3. 9.2¢)

It remains to establish a second condition at ¢ =0 for F,,, through use of eqns (7.9), with a view
towards letting this condition to be as much as possible a condition for F7,(0), in terms of given
quantities. In order to accomplish this purpose, we consider an integrated version of the
edge-zone differential equations (7.4) and (7.5), with an appropriate weighting function, as
follows.

We write, as a consequence of eqn (7.4),

1
[ a-mgn+agns Fdn=0; n=0,1 0.4)
-1
In this we write now,
1 1
f 1= 0)8en dn = [(1 = nD)gen + 2n8em] L1 - 2 f-. Zen d1,

with the conclusion, which follows from (9.1) and (7.8), that

i
f | (1 - 1'2) Ben d"] =(. (9.5)
Introduction of (9.5) into (9.4) and observation of the edge conditions at infinity then gives
further

1
f (1= (a’gln + Fi)dn =0; n=0,1. ©.6)
-1

Upon using (9.6), in conjunction with (7.9a, b), we obtain as conditions for F, and F;,
w0 =1, w(0)=0, (9.7a,b)

and we see that, in fact, the determination of F,, may in all cases considered here be carried
out without explicit reference to the edge zone contribution to the compiete solution of the
problem.
It suggests itself to see to what extent application of the same procedure to the differential
equations (7.5) may make possible a reduction of the boundary conditions (7.9¢c) which involve
z and F'z. We find first, proceeding in the same way as in going from (9.4) to (9.6), and observing
that nFZ,_, is an odd function of 7, that now

1 1
[ 0-m @+ Frydn=2[ nga-sdn 08

forn=2,3.
Evidently, eqn (9.8), together with the edge conditions at infinity, allows us to conclude that

! 1 o
[ -1 1a%u@m+ Fu@dn ==2 [ n [ ga-se, m dédn. 09
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for n =2, 3. Therewith, and with the consequences of the first relation in (8.1), we obtain
altogether that

Fu0=-22Fo0+3[ 0 [ gademacan+2E [ a-mrgnsoman 010

for n = 2, 3. We note as a very important consequence of (9.10) the fact-that when g,, is an even
function of n, which is the case when s(n) is even, then the integral terms on the right vanish
for n =2 and we have a boundary condition for F;, as well which is free of any reference to the
edge-zone solution contribution.

EXPANSIONS FOR DEFLECTION, AXIAL
BENDING MOMENT AND TRANSVERSE SHEAR STRESS RESULTANT

In order to see the possibility of determining M, and Q, and also V, for the conventional
displacement boundary condition case of an n-independent i, upto terms of relative order p,
solely on the basis of a determination of the interior solution contribution, we rewrite our earlier
expressions for these quantities as follows.

On the basis of eqns (6.22) and (7.1),

V= Bc'?a"[F, + p"(Fy+ Foo)+ p(Fa+ F) + .. .]. aoe.n

On the basis of (6.25), (6.26) and (7.1), in conjunction with eqns (8.1) and (8.2) for the g, and
eqns (9.1) for the g.n

M. = —%F—Eé-isﬁm{F:'o+p"2F,,+p[ (g—g:— v)F,-,,]+... } (10.2)

o=-2_EB {F"’+me,+p[ n_ (65 W) F +3l f F. df} }
3I0-vHa ™ ! ! 5G e 2
(10.3)

We note that it will be possible to determine V,-M, and @, upto terms of relative order p,
soley on the basis of a consideration of the interior solution contributions F,, F; and F,, to the’
extent that it is possible to determine these functions without explicit consideration of the
edge-zone solution portion, as discussed in the preceding section, and to the extent that F,, and F,,
turn out to vanish altogether.

The same conclusions apply insofar as the determination of the stiffness coefficients Kpgp,
Ky and K; is concerned, inasmuch as we have that

= M08, Kvs=-Q(0)B, (104
when V({0)=0, and
Kg = M,(0)/B, (10.5)

when Q(0) = 0%,

EXPANSIONS FOR STRESSES
Introduction of the series expansions (7.1) into eqns (6.23) and (6.24) gives as expansions for
the stresses a,, 7, 05 Up to terms of relative order p

EB . . A Ce
o= i—:%,[g.o +0"(8er + 8io) + P(ge2+ 811~ MBeo) + ... ], (1L.1)

tNote that (10.4) and (10.5) are consistent with (4.1) and (4.2) in the light of the defining relation (6.16) for 8.
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P e g+ "+ Pl o = i), (112
0 = vo, + EB [p"*Fp + p(Fu + Foo) + . .. ], (11.3)

We note that, in contrast to the results for deflection, axial moment and transverse resultant,
the distribution of stress in the shell will, for the general case, be such that edge zone
contributions come out to be of a higher order of magnitude than interior region contributions.
This is not so for the “‘exceptional” cases for which g, and g,; vanish identically. The
significance of this distinction will become apparent in our discussion of the exceptional case of
an q-independent &, in comparison with the case where i, is assumed to be a quadratic
function of 7.

SOLUTION OF INTERIOR AND EDGE-ZONE
DIFFERENTIAL EQUATIONS

Determination of the interior solution contribution, in accordance with eqns (8.1) and (8.2),
is the same as in the earlier work concerned with this contribution only([1]. We find, upon taking
account once for all of conditions for £ = «, with 4m* = 3(1 - »?), that

Fr=(A,cos m¢ + B, sinmé)e™™; n=0,1, (12.1)

and

F, = (A, cos mé + B, sin m&) e — (65

E’z")lm Fro n=23 (122

with the associated functions gi» following from the above in accordance with (8.1) and (8.2).

Having F, and g, as indicated above we now turn to the determination of F,, and g, for
n=0,1,2, 3, in accordance with eqns (7.4)~(7.8). Writing as before as differential equations for
gen and F,,, the set

Gn+ @G+ Frn=0; n=0,1, (12.3)
Ben + @ in+ Flu =g —nFm;  n=23, (12.4)

we take account of the first relations in (7.4) and (7.5), in conjunction with the conditions for
£= 0, 50 as to establish as a system of three boundary conditions for n = =1,

1
f_ GmlEMAn =0, (6D =0, (12.5)

with the presence of the terms F,(£) in (12.3) and (12.4) making it possible to satisfy the three
conditions in (12.5), when without these terms the first condition (12.5) would rule out
significant portions of the solutions of (12.3) and (12.4).

To see that this is in fact so we write (12.3) and (12.4) in the differentiated form

Gontalgm=0; n=0,1, (12.6)
Cent a8 =82~ Flnezy  n=2,3, 12.7

and determine first the solution of (12.6).
We find, by separation of variables, that eqn (12.6) has particular solutions

Zenp = (C1+ C20s An) €782 + (D sin un) e ¥, (12.8)

where Cy, Cy, D, A and u are arbitrary constants. Satisfaction of the three boundary conditions
(12.5) requires that these arbitrary constants satisfy the relations

Ci+CsA™'sinA =0, Ci+Cacos A =0, Dsinu =0. (12.9)
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The conditions for non-trivial solutions in (12.9) are
tanA =A, sinp =0, (12.10)

for all positive roots A = A; and u = u, for jk=123,.... It is evident that the functions sin
wn form an orthonormal system, such that every integrable -odd function of 7 in the interval
-1< n <1 may be expanded in terms of them. Additionally, it can be shown that the set

= €OSA; — COSAm
d” A;j COS A; az1

also forms an orthonormal system, in such a way that every integrable even function f(n), in
- 1< g <1, with the additional property [, f dn =0, can be expanded in terms of them?.
We use the above properties to construct the series solution

B = ;Z. Cin @1(n) €¥= + Din(sin pin) €746 (12.12)

forn=0, 1.

Before proceeding to the analogous solution of (12.7) we return to eqn (12.3) in order to
establish, with the help of the conditions F,,(®)= F,(x)=0, as solution F,,(§) which is
associated with g, in (12.12),

Fa=-a’Y Aj'Cue™;  n=0,1. (12.13)

J=1

We now consider eqn (12.4) where it remains to determine the appropriate particular
solution corresponding to a r.h.s. which can be seen, with the help of (12.11)<(12.13), to be of
the form

sin A - —utia
o2 Cin-a (g;f*‘M)e "% + Dhn-y (s €O pim) €45
]

We find that a particular solution of (12.4) with the above expression in place of the original
r.h.s., which also satisfies the three boundary conditions (12.5), is such that altogether

= -agla : ~mbla n_7mcosAm sinAm ) e
b 2 (Cintim) e * Din sin pun € )+ 2 Cin-2 (A; 2X;c08 A;  2A;sinA; ¢

+ % S Din- (n sin pen -Eﬁmﬁfﬂi’ﬂ) emble (12.14)

and

w=—a’> A7'Cp, e —-;- a? ui'cos pyDmre ™9, for n=2,3. (12.15)

It now remains to determine the constants of integration C,, and Dy, in conjunction with, or
preferrably subsequent to, the determination of the constants A, and B, in the interior solution
portion F;, as given by (12.1) and (12.2).

DERIVATION OF BOUNDARY CONDITIONS
FOR DETERMINATION OF CONSTANTS IN g..

We begin by recalling that the complete system (7.9)-(7.11) of conditions at the edge
€. = & =0 of the shell had been reduced, insofar as possible, to a system of conditions for the

tWe note that it is this orthogonality property of the functions ¢; which is responsible for the advantages of the present
solution of the general problem, in comparison with the solution of the corresponding problem for the isotropic shell.
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F,, alone, consisting of egns (9.2), (9.3). (9.7) and (9.10). A characteristic of these conditions is
that in them the effect of the edge-zone solution contribution manifests itseif through the
presence of certain definite integrals with respect to n of g.(¢, 7), but without appearance of
the g.. themselves. Consequently, these conditions do not contain those elements of the
complete system of edge conditions (7.9)~7.11) which are required for a determination of the
series coeflicients C;, and Dy, in gen

A re-inspection of eqns (7.9)~(7.11) makes it clear that the remaining supplementation of the
boundary conditions (9.2), (9.3), (9.7) and (9.10) must come from eqns (7.9), and not from (7.10)
and (7.11).

We obtain the first of the remaining transformed conditions by introducing (9.7a) into (7.9a)
and by eliminating F,(0) from this relation by considering that [, gi,, dn = 0. This gives

1
a?gl,(0,1) = S(n)—%f_l s(n)dn. (13.1

We finally introduce F’,(0) from (9.10) into (7.9c) and consider that here f!, g., dn =0, and
gin-200, 7) = (1/2)(1 - n) F%-20). Therewith eqn (7.9c) becomes

1
Zom(0, M) = N0, n)—% f M0, 1) -% (%- 1,2) F7_40), for n=2,3. (13.3)

Having eqns (13.1)-(13.3), in conjunction with eqns (12.12) and (12.13) for g, and F,,, we
are now in a position to arrive at some general conclusions, without additional analysis. To wit

(1) The functions g,, and F,, will vanish identically, for all edge conditions cases here under
consideration.

(2) The functions g, and F,, will vanish identically for the special case s(n) =1, but will
otherwise have a dominant effect in eqns (11.1)~(11.3) for the distribution of stress, and a direct
effect of relative order p'” on the values of the deflection V, in accordance with eqn (10.1), as
well as an indirect effect of relative order p'2 on M, and Q, in accordance with eqns (10.2),
(10.3) and (9.2b).

(3) The functions g.; and F,; will make a contribution of relative order p on stresses, in
.accordance with (11.1)~(11.3) but will make no such contribution to V, M, and Q.

THE CASE OF A UNIFORM EDGE ROTATION
We assume now, as in [4], an axial-edge displacement i = — 8,(r - a), giving &, = — 8, and,
in accordance with (6.16), 8 = — (3/4) (- B,) (4/3) = B, and therewith, in accordance with (6.15),
s=1, (14.1)
and then, as discussed in the preceding section

8 =0, Fy=0. (14.2)

With (14.2), and with g,, =0 and F,, = 0, we have, from (9.2), (9.3), (9.7) and (9.10) as edge
conditions for the interior solution contribution

Fu@) =1, Fy(0)=Fy(0)=Fix(0)=0 (143)
together with
Fio(® = Fis(0) = F(0) = F;3 =0, (14.9)
for the case V(0)=0, and

Fi(0) = Fii(0)= F0)= F(0)=0 (14.5)
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for the case Q(0)=0, with eqn (14.3), together with (14.4) or (14.5), to be used for the
determination of the constants of integration A, and B, in (12.1) and (12.2).

We omit the elementary calculations leading to the appropriate values of the A, and B,.
With their help there follows

V()= - c'?a'?B [F,,(0) + pFu(0) +. . ]

-G [1-BGe+3) ] (46
M0 =521 8{ Fiu0+ o[ Fr0)- (- +) @] ..}
B2 B0 )
for the case Q(0) =0, and
M(0)=—rm3[ ~Ly (5+5)+ ) (148)

for the case V(0) =0 where, it is recalled, 4m*=3(1-? and p = c/a.

We note, specifically, that the results in (14.6)~(14.9) have been obtained without deter-
mination of any edge-zone solution contribution and that furthermore the stiffness coefficients
Kgs and Ky, which are associated with (14.8), in accordance with (10.4), as well as the
coefficient K, associated with (14.7) in accordance with (10.5) are consistent with our earlier
bound results in [4], upon specializing these so as to correspond to the limiting-type assumption
of a medium unable to experience transverse normal strains.

Having determined the F,,, we may now obtain the here leading terms g,, and F,; of the
edge-zone solution portion of the complete solution of the problem from eqns (12.14) and
(12.15), with C;, = 0 and D;, =0, in conjunction with the boundary condition (13.3) which now
reduces to the form

g0, m=5(3- ") Fz, (14.10)

or, equivalently, to

EA;Cn¢:+mDusmm=%a(n ) %(0) (14.11)

in the interval - 1 <5 < 1. The orthonormality properties of the functions ¢; and sinu,n then
give

Dy, =0, A,Cn=—F"'(0) f (n -—) @dn = 3A S F0) (1412
and therewith
- 2 -2 —Aﬂ- o
ga=3a (T A mme ) F0). (14.13)

A consideration of (14.5) now gives that g, vanishes throughout, just as g., and g.,, for the
case Q(0)=0. For the case V(0)=0 the function F,, with F;,(0)=1 and F,,(0) =0, gives the
relation F,(0) = 2m? for the last factor in the expression for g.
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Having determined g,; it becomes possible to evaluate the distribution of stress in the shell,
in accordance with eqns (11.1)-(11.3), with these equations reducing, for the present problem to
the form

E 12 . .
a,=—éﬂfl_y (2o +p"ge2+.. ], =—T§_E€,[g,‘,+ggz+...] (14.14)

with a corresponding expression for o, We see once again that the “‘elementary” interior
contribution in o, (as well as in o) dominates the supplementary edge zone contribution. At the
same time the edge zone contribution is of the same order of magnitude as the interior
contribution insofar as the transverse shearing stress r is concerned. We note, in particular, the
possibility of writing, on the basis (14.14) and (14.10), as expression for the edge shear
distribution for the case V(0)=0

0, =228 (1= 1~ (3 ) (14.15)

with the second term inside the braces representing the edge zone effect, which has the
expected property of making no contribution to the shear stress resuitant Q.

A CASE OF NON-UNIFORM EDGE ROTATION
We now consider, as an example for which the resuits of the standard two-dimensional shell
theory are complemented in an essential way by three-dimensional considerations, the case for
which the axial edge displacement is prescribed in the form

k(r~a)

a=-g[r-0+f 2] @ =-al+ke) (1.0

and therewith, in accordance with (6.16) and (6.15)

1 _1+kn?
B=- ﬁo(l +§k), s(n) —-l—;T‘%. (15.2)

We can now, as before, determine the first term of the interior solution contribution, with
the help of the edge conditions

Fi =1, F,0)=0 or F70)=0 (15.3)
which follow from (9.2a) and (9.7a), depending on whether V(0) =0 or Q(0) = 0 is prescribed,
and we note that this determination does incorporate information on the nature of the shape
functions in (15.1), by way of the defining relation (15.2) for 8.

Introduction of g., from eqn (12.12) into the relation

n’~1/3

2 =
@’ go0) =k 05 (15.4)
which follows from (13.1) in conjunction with (15.2) now gives
=4 K3 =
C”-;-A?H-HS' Dy, =0. (15.5)

Having g.., and g,, and recalling that g,, = 0 for all cases, we now have as expressions for
stresses, upto and including terms of relative order p'?,

E . . -
Ux =-1-:%!(g¢o+p‘lzgi0)9 7=1—_E_5g'”’ (15.6)
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aswell as oy = wo, + EBp'™F,, where, notably, all components of stress are, within the narrow edge
zone, of a higher order of magnitude than the expected stresses associated with the interior solution
contributions g, and F,.

We omit listing explicit formulas for stresses, and instead consider eqns (10.1)-(10.3) for V,
M, and Q, where we note that evaluation of the contributions of relative order p'? and p
involves the relations

F.,,(0)=—l4:’;’1352—,, fF d¢ = Hk,SEﬂ (15.7)

Upon evaluation of (10.1)-{10.3), we now obtain in generalization of eqns (14.6)-(14.9)

(/",(%)')""2%{1+£;‘/(E)1+k/52" 'E’[zoc( 142,‘11/352'7) ] }
(15.8)

N C (A S T R BT

when Q(0) =0, and

N Ol - = R

(15.11)

when V(0)=0.

In order to evaluate (15.8)~(15.11), we note that with the successive roots A; = 4.49, 7.72,
10.90, 14.07, 17.22, 20.37, 23.52, 26.67, 29.81, 32.99, (j + (1/2)) =, ... of eqn (12.10) the two sums
of negative powers of A; come out to be

2AT=0015, 3 A7¢~0.0029. (15.12)

Insofar as the interpretation of eqns (15.8)-(15.11) is concerned, it should be noted that the
leading terms on the right may be considered as equivalent to the consequences of ordinary thin
shell theory, in conjunction with the solution of the problem of how to introduce an appropriate
representation of the displacement condition (15.1) into this theory. Additionally, we find that
while the effect of transverse shear deformability and of cross-sectional width changes comes
out as expected, to be of relative order p, the effect of the n’-term in &, comes out to be of order
p'”, with the numerically largest values of these correction terms resultmg upon letting k tend
to mﬁmty, with a finite lumtmg value of Bok.

To obtain an impression of the numerical consequences of replacing a linear distribution
i = ug(r — a)/c by a pure cubic distribution @ = uo(r — a)’/c* we set in eqns (15.8)(15.11) k=
and B = — Bok/S = 3uy/5c. Therewith, and with eqns (15.12), there follows

\X(c(?) Zm{ \/30) [200(1+02)+ ]} (15.13)
Mi_c«’)-) \/( ){ [200(1 0.2)~ ]} (15.14)

when Q(0) =0, and

Mx(0) _gz\/( ){1+0.153—\/(3G) (206 ;’)} (15.15)



924 S. Nalr and E. REISSNER
QO _ 2{ e f_)_ P [3_5_ Z]}
2 f,a 1+03L (30 £, [22 0 +0.025)+2 (15.16)

when V(0)=0.

As might be expected, the shape correction terms with p'> come out to be numerically quite
significant for moderately thin shells, say for p =0.1. Additionally, due to the change from a
linear to a cubic edge displacement distribution a significant modification of the terms with p, via
the additive terms +0.2 and 0.025, is seen to occur in some of the above expressions.
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