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Abllnct-Previous considerations by asymptotic expansion procedures of the relation between elasticity
theory results and thin-shell theory results for the case of rotationally symmetric deformations of an
edp-Ioaded semi-infiDite circular cylindrical shell are supplemented by an analysis of this problem for a shell
possessina a limitina-type ortbotropy. such that transverse normal straiDs vanish ideRticaIIy. It is sbown that
assumiDa this kind of ortbotropy has the important benefit of aIIowa the derivation of exact expressions for
the edae zone solution contn'bution. wben such exact expressions are not possible for the problem of the shell
with more pneraI properties of the material. One result of the present analysis is an answer to the followilll
question. Given a shell with arbitrarily prescribed _ displacements (compatible with the assumed type of
ortbotropy). what is the asymptotically exact form of the correspondiq conditions for this same problem.
treated within the framework of two-dimensional tbin-shell theory?

INTRODUCTION
We return once more to the problem of rotationally symmetric deformations of a semi-infinite
circular cylindrical shell as the simplest non-trivial example of the relation between three
dimensional elasticity-theory analysis and two-dimensional thin-sbeD-theory analysis. The first
paper on this subject[1) considered the problem of tbe asymptotic determination of a class of
"interior" solutions for the given three-dimensional boundary value problem, and the derivation
tberefrom of a system of two-dimensional sbeD-theory equations including the formulation of
sheD-theory boundary condition statements from given three-dimensional elasticity-theory
statements of such conditions, for the case that these conditions were stress boundary conditions.
Asubsequent paper by Reiss [2) extended this work by considering complete asymptotic solutions,
including interior solutions and "edge-zone" solution contributions. The results obtained in this
manner confirmed the conclusions in [1) in regard to ~e problem of two-dimensional sheD theory,
while at the same time supplying significantadditional insights in regard to the nature of the relation
between two- and three-dimensional theory, with these insiahts having meanwhile been extended
and generalized in important ways by various other workers, in particular by Goldenweiser[3).

One of tbe difficulties encountered in the use of an edge-zone solution contribution, as done
by Reiss [2), consists in the fact that the relevant two-dimensional boundary value problem for a
bi-harmonic function defined in a semi-infinite strip cannot, for some important cases including
the case of pure traction conditions and of pure displacement conditions, be solved in closed
form, and to the extent that this is the case the asymptotic results wbich are obtained remain
approximate rather than exact.

Given the impossibility of a closed-form solution of the relevant bi-barmonic problem, .as
well as the apparent absence of results for the case of pure displacement edge condition cases,
we have recently considered the complete problem by combining interior asymptotic expan
sions, Rayleigh-Ritz type edge-zone solution contributions, and upper and lower bound
formulas through use of the principles of minimum potential and complementary energies-[4).
The principal results of this analysis consisted in the derivation of upper and lower bounds for
the values of influence coefficients involved in the solution of the semi-infinite circular
cylindrical shell problem with prescribed edge tractions or prescribed edge displacements. All
of these bound results were such as to imply the determination of exact results for the solution
of the three-dimensional problem by means of two-dimensional theory. insofar as the leading
terms in an expansion of the solution of tbe three-dimensional problem in powers of waD
thickness h to shell radius ratio a were concerned. We also determined supplementary terms for
such an expansion, of relative order h/a (including terms of order (h/a)ll2 which are encoun
tered for some classes of edge conditions), with these supplementary bound terms being such
that in some cases there was coincidence between upper and lower bound results so that, in
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effect. a determination of exact results. up to terms of relative order hIa. was accomplished.
In order to understand the meaning of these results. as well as the significance of the

analysis which follows it is convenient to interpret tbe leading-term results as exact results for
an infinitely-thin shell (i.e. for a shell for which hla ....0). with the supplementary terms
representing the effects of finite thickness. There are altogether three distinct effects of finite
thickness. The first of these is a geometrical effect, having to do with the change of width of
shell elements with distance from the middle surface (so that this effect is absent for the special
case of a fiat plate). It is known that this effect is taken account of properly (assuming absence
of the other two) in a refined two-dimensional shell theory associated with the names of AGgge.
Lurie and Byrne The second effect is the effect of transverse normal stress deformability
(which is absent for the case of a limiting-type orthotropic material unable to sustain transverse
normal strains). It has earlier been shown that this effect is of the same order of magnitude as
the geometrical FLB effect[l], and our recent work[4] indicates that for some classes of edge
conditions this effect comes out to be of relative order (hla)112 (without these terms being of
numerical significance, however, in comparison with the co-existing h/a-order effects).

The third of the effects of finite thickness is the effect of transverse shear deformability.
This effect too comes out to be of relative order hla. We are not concerned here with the
consequences of this effect, in regard to the order of the differential-equation system and to the
number of the associated boundary conditions. as discussed most simply in recent work dealing
with the subject of plates [5]. Rather, we are concerned with this effect from the point of view
of its relative numerical dominance in comparison with the other two, as revealed by our upper
and lower bound calculations[4].

Having previously obtained upper and lower bound results for the three effects of geometry,
transverse normal stress deformability, and transverse shear deformability, with these three
effects being additive up to orders of magnitude which are of primary interest, we now
undertake an asymptotic 'analysis of two of the three effects, these being the effects of
transverse shear deformability and of geometry. Our analysis is based on recognition of the fact
that it is possible to derive exact solutions for the two-dimensional semi-infinite strip problem
governing the edge-zone solution contribution, upon assuming a limiting-type orthotropy in
such a manner that transverse normal strains vanish identically.

Having the existence of these exact solutions for the edge-zone contributions involved in
the asymptotic expansion procedure, we are now in a position to verify and, in principle, to
refine the results of our upper and lower bound analysis. Beyond this, we are able to obtain
results for types of boundary conditions which do not fall within the scope of the indicated
bound solutions. To mention a specific example, our analysis permits us to solve a problem
which has long been of interest to us but for which until now no rational solution has come to
our attention. The problem is as follows. Given a semi-infinite circular cylindrical shell, with
arbitrarily prescribed edge displacements as loading conditions. To be determined is the
asymptotically exact form of the corresponding conditions of the first-order interior solution
contribution, to wit, the appropriate form of the corresponding boundary conditions for this
same problem, treated within the frame work of standard two-dimensional thin shell theory.

FORMULATION OF THE PROBLEM
We take as differential equations for symmetrical deformations of circular cylindrical bodies a

system consisting of tbe equilibrium equations

l'fT"", +(N)., =0, N", + (l'fT,)., - U, =O.

in conjunction with stress-strain (displacement) relations of the form

(2.1)

_ u" -11(1', u,
U",- E -lI'Em'

.£. =U, - 11(1'" _ .. .!!!..
r E '" Em'

u, U,,+U, T
V., =E, -lI,~, U.,+V",= 0' (2.2)

where Em =(EEr)1/2, with positive E, Er and 0, and with the additional strain energy positive
definiteness conditions 11

2 < 1 and 211,2 < 1- 11.
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The system (2.1) and (2.2) is to be solved in the region 0s x < co. a - c S r Sa + c subject to
face boundary conditions

r= a ± c: u,=O, T=O. (2.3)

subject to edge boundary conditions "at infinity" which for alLcases are taken in the form

x"'CO: u=O. v=o (2.4)

and subject to edge boundary conditions at the loaded edge of the sheU. of the form

x = 0: {u,' = ~." or u" =~'"
v =v. or T= T.

(2.5)

(2.6)

with the r.h.s. in these four relations being prescribed functions of r. subject only to the
restriction that f:~:(rla)6" dr = O.

Within the frame work of the above class of three-dimensional problems (which because of
the assumed absence of any 6-dependence of the solutions formally reduces to a class of
two-dimensional problems) we are particularlY concerned in asymptotic ,reductions to two-
dimensionality (with this mluetion here formally to one-dimensionality) for the determination
of the weighted stress averages

J.".c J.".c
M" = Il-C (rla)u,(r-a)dr. Q= Il-C (rla)-rdr.

and for the determination of displacement measures such as

v =v(x.O), fJ =u,,(x. 0). (2.7)

with these reductions being of technical significance for "sufficiently small" values of the wall
thickness-diameter ratio cIa of the shell.

In association with the derivation of a system of two-(here one-) dimensional difterential
equations for the quantities M". Q. v. fJ it is necessary to also derive a system of suitable edge
conditions. involvinl the functions ;1." v. Ux> iF which appear in. eqns (2.5). One expects, and this
has been shown to be true in [1] and (2] that insofar as the traction condition portions in (2.5)
are concerned the equivalent lower-dimensional edge conditions are of the form

x=O: Q=Q. (2.8a)

with M" and Q defined in terms of U" and iF in accordance with eqns (2.6).
One also expects, and this is generally considered to be correct, that when the displacement

condition pOrtions in eqns (2.5) are such that ii" as well as v are independent of r. then the
equivalent lower-dimensional edge conditions are of the form

x=O: V=v. p =ii,,. (2.8b)

We will, in what follows, re-eonftrm the asymptotic validity of the above expectation, within the
frame work of the restrictions associated with the nature of the analysis which is here cariied
out. Over and above this result. however. we will establish the form of the edge conditions for
"effective" measures V and p, not necessarily identical with these measures as defined in eqns
(2.7). which are valid in the event that ii" and vare other than independent of r. An example of
this nature which will be considered explicitly is the case where Ii is assumed to be proportional
to (r- ar in place of the usually assumed linear distribution.

DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS FOR
TRANSVERSELY IN EXTENSIONAL DEFORMATIONS

The case of transversely inextensional deformations is 'given upon setting

E,=co (3.1)
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in the stress-strain relations (2.2). These may therewith be written in the form

Eu.x = ax - 110:"

v., = 0, G(u., + v..d = T, (3.2)

where it will be assumed from here on that E, v and G are independent of x and r.
Our first conclusion is now that the transverse displacement component does not vary

across the thickness,
v =Vex) (3.3)

and that, associated therewith, the transverse normal stress component u, assumes the
character of a reactive quantity.

In order to solve the remaining boundary value problem, we bqin by satisfyiq the first of
the equilibrium equations (2.1) by means of a stress function., in the form

fT=-a...., (3.4)

where the factor a on the r.h.s. has been introduced to make the writing of some of the
developments which foUow somewhat more convenient.

We next use the second of the stress-strain relations (3.2), in conjunction with eqn (3.3) in
order to write for the circumferential normal stress,

reT, =va '1'., + EV. (3.5)

With the above expressions for u. and T, we obtain from the second equilibrium equation
in (2.1) as an expression for the transverse normal stress ar which satisfies the condition of
vanishina u, for r =a - c

reTr =a I' ('I'.xx + vr-I'I'.,) dr + EVIr

r- I dr.
a-c G-C

(3.6)

The condition that Ur must also vanish for r =a + c gives as one of two equations connecting
the two functions .(x, r) and V(x)

I
CI
+

C
( V) EV a + c'I'.xx +-'1'., dr+-In-- =O.

CI-C r a a - c
(3.7)

A second equation connecting'" and V foUows upon expressing "'.r in terms of 9' and V in
accordance with the last relation in (3.2), in conjunction with (3.3) and (3.4), as

u =- V _~!.l:
.' .x r G ' (3.8)

and by combining this result with the first relation in (3.2), written in the form E"'.xr =
Ux.r - 1'0'••" with Uz and u. taken from eqns (3.4) and (3.5). The ensuina difterential equation may
be written in the form

1- v
2

( 'I' r) 1 r v-- 'I' --"- +-'1' +- V +- V=O.E .rr r G.xxa.xJC ra
(3.9)

Having eqns (3.7) and (3.9) it remains to state boundary conditions in terms of 'I' and V, in
accordance with the remainina face boundary conditions in (2.3), which concern T, and in
accordance with the odp conditions as stated in eqns (2.4) and (2.5).

We begin by satisfyiq the edge condition at infinity by stipulating

'1'(00, r) = 0, V(oo) = o. (3.10)
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With this, and with observation of the relation J::;(rla)ux dr =0, the face boundary conditions
T(X, a ± c) = 0 take on the form

"(X, a,± c) =0

Finally, the conditions (2.5) for the loaded edge of the shell become

(3.11)

I
v +.!!.~=-11

oX G r .r

x=o:

V=V

or

or

" r Ux-a:;.. =_
r a'

f
.,+c

".rdr= - Q.
.,-c

(3.12)

We note that in writing the second set of conditions in (3.12), we have taken account of the fact
that the assumed properties of the material require that the prescribed transverse displacement
v be \ndependent of r and so may be written, in consistent fashion, as V, and that at the same
time this specialization of properties implies a sensitivity of the medium to the resultant Q of
the edge stresses f only, rather than to the details of a prescribed f-distribution.

STIFFNESS AND FLEXIBILITY COEFFICIENTS
In accordance with our earlier work in [4), we define general stiffness coefficients K, with

reference to the problem of prescribed edge displacements, for the case that ii.r =- /Jo and
V=- Vo, by means of relations of the form

(4.1)

where Kv~ =K~v.

At the same time we define a specialized system of such coefficients for mixed edge
condition problems, as follows

MAO) =K~o (when f =0),

Q(O) =KvVo (when ux = 0). (4.2)

Insofar as the problem of prescribed edge tractions is concerned, we have earlier[4] defined
flexibility coefficients C with reference to traction distributions (rla)ux = (3MoI2c3

) (r- a) and
(rla)f =(3QoI4c) [1- (r- afl lc2j, and weighted edge displacement averages

in the form

• 3 fa+c[ (r-a)2]
/Jo =- 4c a-c 1---cr- ".r dr,

• 3 f"+c [ (r- a)2]Vo =- - 1----:r- vdr,
4c a-c c

(4.3)

(4.4)

with these relations being "nearly" the inverses of eqns (4.1), upon the identifications fJ: =/Jo,
V: =VCh Mx(O) =Mo and Q(O) =Qo'

The principal aim in [4] was the deduction of upper and lower bounds for the coefficients K
and C, with these bounds depending on the geometrical parameter clG, as well as on the
materials property parameters E, EIG, BlE" v and v,. Among the characteristics of these bound
relations the following are noteworthy.

(l) In the limit cla .... 0, our upper and lower bound values coincide with each other and with
the corresponding values of what may be called first-approximation classical thin shell theory
results.
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(2) For sufficiently small finite values of cIa our bound values involve additive terms of
relative order (cla)I/2 and of relative order cIa. The terms of order (cla)112 represent transverse
normal strain effects alone, while the terms of order cIa represent transverse normal strain effects,
as well as transverse shearing strain effects, and also geometrical effects of the FlUgge-Lurie
Byrne type. The numerically dominant of these three effects is the transverse shearing strain effect,
even though this effect does not contain any· (cla )112-contributions.

Insofar as the determination of stiffness and flexibility coefficients is concerned the
analysis enables us to obtain exact values of all contributions of relative orders (cla)1/2 and cIa
(as well as exact values of contributions of higher order in cIa should we so desire) subject only
to the restriction Er =00. While it is possible to do this for the entire set of ten coefficients
defined in eqns (4.1H4.4), the necessary analysis will be carried out in what follows only to the
extent of obtaining expressions for KIJIl, K VII and KII•

THE NON-DIMENSIONALIZED BOUNDARY
VALUE PROBLEM

We introduce a non-dimensional axial coordinate t and anondimensional radial coordinate
11, measured from the middle surface of the shell, by writing

x = bt, r= a + C11, (5.l)

with b being in the nature of a characteristic length, to be chosen presently.
We further set

(5.2)

where'"0 and Vo remain to be chosen, and we define dimensionless parameters p and a in the
form

(5.3)

Indicating now differentiations with respect to t and 11 by primes and dots, respectively, the
two differential equations (3.7) and (3.9) for'" and V take on the following form

"'o[g" -rf;;;; g' +a2~g"]+ Vo [~(1 + PTI)F"+ 1r~ F] =O.

At the same time the face boundary conditions (3.11) become

g(t,:t 1) = 0,

and the edge boundary conditions at infinity become

g(oo, 11) = O. F(oo) =O.

(5.4)

(5.5)

(5.6)

(5.7)

Insofar as the boundary conditions (3.12) at the loaded edge are concerned, we will limit
ourselves in what fonows to the consideration of just two of a total of eiaht possible cases, both
of them concerniq problems with prescn"bed axial duplacem.." as expressed in t~1 of the
slope function ii"., with the other condition being the displacement co8liIition of vanishinl ii, or
the traction condition of vanishing Q. Expressed in terms of g and F this set of conditions
takes on the form

F(O) =0 or fl 1'(0, 11) d11 =O.

(5.8)

(5.9)
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Expressions for the stresses 0':;, T, 0'" and for the stress resultant Q and the stress couple M:;
follow from eqns (3.4), (3.5) and (2.6) as

(5.10)

(5.11)

E 'I' eflQ=_~_o_ g'd'l.
1- JI b -1

(5.12)

We list additionally as expression for the circumferential stress resultant

(5.13)

and we shall not concern ourselves, in what follows, with the complementary expressions for 0',

and M,.

INTERIOR AND EDGE ZONE SOLUTION
CONTRIBUTIONS

We accept as known the fact that the solution to be obtained will, for sufficiently small
values of p, be composed of two contributions, one of them being an "interior" contribution g"
~, with characteristic leQlth b =bi = (ae)l/2 and the other an "edae zone" contribution g" F"
with characteristic lenath b ... b~ =e. We note that in this way ~ =Ft(6) and F~ =F.(f.), etc.
but we sball refrain from making the distinction between fi and f. explicit, as this will cause no
difficulty as the analysis proceeds. With fl' f. and '7 defined in this manner, and in view of the
form of the di1ferential equations and boundary conditions for g and F, we are in a position to
stipulate the basic order of magnitude relations

gi, ge.~, Fe. gi, g;' gi, g~ Fi, F~= 0(1), (6.1)

and we shall write, in place of eqns (5.2), so as to make the distinction between the two solution
contributions explicit

(6.2)

with the form of the two di1ferential equations for the set g/o ~ and for the set ge. F~ being
distinct, to the extent that this is required to account for the di1ference between bi and b..

Setting b = bi = (ae)I/2, we obtain from eqns (5.4) and (5.5)

(6.3)

(6.4)

Setting b =b. =e, we obtain instead

(6.5)

(6.6)
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In view of the difference between ~I and ~e. the functions gi and I. must individually satisfy
the face boundary conditions

", =:t: 1: gl =0, g. =0,

and for the same reason the edge conditions at infinity (5.7) must be satisfied.individuallY,

~ =00: gl :: 0, g. = 0, R = 0, F. =O.

(6.7)

(6.8)

With II and R, and g. and Fe. sofar beina subject to a system of uncoupled requirements,
there remains only the system edge loading conditions (5.8) and (5.9) to accomplish the
necessary coupling for the determination of tbe two sets of functions. We find that eqn (5.8),
again with bi =(ac)112 and b. =c, takes on the form

and eqns (5.9) take on the form

(6. lOa)

or

(6. lOb)

Havina the relations (6.2)-(6.10) our next step is an Ippropriate disposition of tile four scale
factors .1, '1'" Vi, Vr We begin by observing that in order to be able to satisfy the face
boundary conditions (6.1) in such a way tbat not only the functions II and g.. but also the
functions R and F. are involved it will be necessary to bave the terms with g" in eqns (6.4)
and (6.6) of the same order of magnitude as the terms with F'in these equations. AccordiDalY,
we set

(6.11)

Introduction of (6.11) into the edge conditions (6.9) and (6.10) then Jives further

VIP 112[F,(O) + I:1z" gj(O, ",)] + V. [F~O) + 1:~ g~O,"')] =- cii,,. (6.12)

with (6.108) remaining uncbanaed, and eqn (6.10b) assumins the form

f, [VIP312 gj(O, ",)+ V~g~O,",»d" = o. (6.13)

Having eqn (6.12), we now impose the requirement that both interior and edge-zone solution
contributions participate in the satisfaction of this non-homogeneous edge condition. This
means that we must have

(6.14)

Finally, we introduce a weighted average, 11, of the variation of edge rotations in thickness
direction by writing

(6.15)
with

(6.16)

(so that 11 =11" when ii. r =- 11" :: const).
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With (6.14) and (6.15) and with the further stipulation that

the nonhomogeneous edge condition appears now in the form

and the homogeneous edge conditions (6.13) and (6.108) become

F;(O) +P1/2F,(O) =0,

or

913

(6.17)

(6.18)

(6.19a)

(6.19b)

Equations (6.18) and (6.19) are to be used in conjunction with the consequences of
introducing (6.11) into eqns (6.3H6.6), that is, in conjunction with two systems which may be
written in the form

(6.20)

and

(6.21)

The solution of (6.20) and (6.21), subject to the edge conditions (6.18), (6.19) and (6.8) and
subject to the face boundary conditions (6.7) is to be introduced into eqns (6.2) for 'I' and V.
Upon taking account of the relations (6.11), (6.14) and (6.17) we have then

(6.22)

Furthermore, introduction of 'I' and V from eqn (6.2) into eqns (5.10H5.12) gives as expres
sions for stresses

~
.+ 1/2 • ~,,~+ tII1~

tT = I, P It ., = _ ~
x 1- 1+p7J' 1- 1+p7J'

• 1/2' 1/2
=B{3 [ " Ie + P Ii + P F; + pF,]

tT, 1- ,,2 1+ p7J 1+ p7J ,

and as expressions for the stress couple Mx and the .tress resultant Q,

Q=-~1C II (1~+pgj)d'1.
-" -I

55 Vol. 14. No. II-C

(6.23)

(6.24)

(6.25)

(6.26)
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We note that while the above formulas for M;r; and Q give the impression that the edge-zone
solution contribution ge makes a dominant contribution to these quantities-which, if true
would detract much. from the significance of conventional two-dimensional shell theory-we
will find shortly that f~1 ge d11 comes out to be of a smaller order of magnitude in p than pl/2 J~I

gi d11, so that no problem of this sort does. in fact, arise.
Beyond this we may also note that the differential equation for g. in (6.21) is effectively of

second order, in place of a fourth-order bi-harmonic problem which is encountered in the
analysis of the corresponding problem for an isotropic homogeneous shell medium. It is this
difference in the order of the differential-equation problem for the edge-zone solution contribu
tion which makes possible an exact solution of the complete problem for the case of the
transversely inextensional medium.

PARAMETRIC EXPANSIONS FOR INTERIOR AND
EDGE·ZONE SOLUTION CONTRIBUTIONS

An inspection of the differential equations (6.20) and (6.21), in conjunction with the
boundary conditions (6.7), (6.8) (6.18) and (6.19) indicates the possibility of an expansion of the
solutions in powers of the parameter pint. Writing

(7.1)

(7.2)11=0,1,,;~+F'[,,""O;

and observing that (lIp) In ((1 +p)/(l- p)] "" 2(1 +p213 + ... ], we have then from eqns (6.20),

fl gr" d11 +2(1- p~F1It = 0,

(7.3)

with analolous relations for 11 =4, 5, ... which will not be utilized in what fonows, and eqns
(6.21) give in the same manner

II ,;" d11 =0, g;~ + a 2,;" + F.... "" 0; 11 =0,1, (7.4)
-I

I I ,;" d11 =0, g;~ + a 2,;" + F.... =g ;"'-2 -11F....-2; 11 =2,3, (7.5)
-I

II,;" d11 =- /I II g..... d11 -2(1- p~F....; 11 =4, 5. (7.6)*
-I -I

The associated boundary conditions which follow from (6.7) and (6.8) are

11 = ::t 1:

g=00: gilt =0,

'lit =0, g.. =0,

glfl=O, F;,,=O, Fm=O.

(7.7)

(7.8)

The couPlina between interior and edge zone contributions will be effected in the process of
satisfying the boundary conditions for the loaded edge of the shell which foUow from (6.18) and
(6.19) in the form

PIICO) + F:,.,(O) +a 2g:,.,(O, 11)·=$(11),

Fh(O) + F~I(O) + a2'~1(0, 11) =0,

Fi,,(O) +F~(O)+ a 2,:.,(0. 11) = a 211,:"_2(0. 11) - a2g~,,_:<O,11);

11 =2,3,

(7.9a)

(7.9b)

(7.9c)

tExccpt for tbe fonp of (6.191) this expansion would be in poWell of P. rather Ihan pJI1.. This means that when (6.1%)
applies, _baIf tbe terms in our expansion wiD vanish autOlllatiell1y.

*It is in this one piau that we require equatiolls for /I .. 4, S. in order to complete tile determination of our expansions
terms up to /I .. 3.
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or
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FiciO) = 0, Fi,,(O) + Fen-I(O) = 0; n = 1,2,3, ...

I
I (en(O,,.,) d,., = 0; n = 0, i,

-I

I
I g~(O,"')d"'=-II gi"-2(0,,.,)d,.,; n=2.3, ....

-I -I

915

(7.10)

(7. 11a)

(7.11b)

DETERMINATION OF INTERIOR SOLUTION
CONTRIBUTION TERMS

We begin by determining the interior solution contribution to the extent that this is possible
without bringing in the form of the associated edge zone solution contribution. In doing this we
will arrive at a set of ordinary differential equations for the dimensionless deflection functions
Fill. wi~ FiD beiDa equivalent to the corresponding function in accordance with conventional
two-dimensional shen theory, with Fit accounting for the effect of deviating from the "con
ventional" assumption of an ,.,-independent edge slope function s(,.,). and with Fi2 accounting
for the effects of transverse shear deformation and of element width changes in the same
manner as previously found in[l].

We complement these results by the discovery of the complete system of boundary
conditions for Fit» for an arbitrarily prescribed edge slope function s(,.,), through use of the
differential equations for the edge-zone solution contributions, but without having to determine
any part of the edge-zone portion of the solution of the complete problem.

Considering the fact that Fill = Fill(€), we find from eqns (7.2), in conjunction with the
appropriate statement in (7.7) the simple result

In the same way we find from eqns (7.3) and (7.7), and with (1- p2)a2= BIG,

_.!..::..!i . !L:..!l. (.!..::..!i E 5 - 6,,2 + 71'\
gitt - 2 Fill + 3 F i11-2+ p 2 - G 8 -JFiII - 2,

Ff:' +3(1- p2)Fitt =(~~ - 2p) F1"-2; n =2, 3.

(8.1)

(8.2)

We now tum to the form of the boundary conditions for the functions Fi". We find from
(7.8) the obvious requirements of vanishing Flit (and F'u,) for €= QQ. As far as conditions for
€= 0 are concerned, we have as one of the two conditions for Fit» for one of the two cases
considered in (7.10) and (7.11), that FiD(O) = O. The other conditions, in accordance with
(7.9H7.11) an appear to require the simultaneous determination of Fen and g... We will show
next how to avoid this complication to a significant extent.

DERIVATION OF BOUNDARY CONDITIONS FO~ F,. WITH OR WITHOUT
INVOLVEMENT OF EDGE-ZONE SOLUTION CONTRIBUTION

We begin by observing that eqns (7.4) and (7.5), in conjunction with the conditions
gen (QQ, 71) = g ~,,(QQ, 71) =0 imply the relations

L>.,M, "I) d71 = ft(..(t, 71) d71 = 0, (9.1a)

for n = 0, 1, 2, 3. Furthermore, from (6.21)

(9.1b)
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With the help of (9.1), and through use of the first relation in (8.1) and (8.2), we may write
the set of conditions in (7.10) and (7.11) in the form

Flo(O) =O. or Ffo(O) =0,

FI\(O) = - Feo(O), or F:,\(O) = 0,

Fln(O) =-F.n-I(O), or F:(O) =(~~ -,,) F~(O)

- 3(1- ,,2) fa'" F..-M) d~; n = 2,3.

(9.2a)

(9.2b)

(9.2c)

It remains to establish a second condition at t =0 for Fin, through use of eqns (7.9), with a view
towards lettilll this condition to be as much as possible a condition for Filt(O), in terms of liven
quantities. In order to accomplish this purpose, we consider an intelfated version of the
edp-zone differential equations (7.4) and (7.S), with an appropriate weiahtina function, as
foDows.

We write, as a consequence of eqn (7.4),

(9.4)

In this we write now,

JI fl2 - 2 • \
_I (1- ,., )g.nd,., = [(1-,., )g.n +2,.,g.. ]_1 - 2 _I g... d,."

with the conclusion, which foDows from (9.1) and (7.8), that

(9.S)

Introduction of (9.S) into (9.4) and observation of the edae conditions at infinity then gives
further

(9.6)

Upon using (9.6), in conjWM:tion with (7.9a, b), we obtain as conditions for Flo and F II ,

Fio(O) =1, Fi!(O) =0, (9.7a,b)

and we see that, in fact, the determiDa&ion of Flo may in aU cases considered here be carried
out without explicit reference to the edle zone contribution to the complete solution of the
problem.

It s\lllests itself to see to what extent application of the same procedure to the di1ferential
equations (7.S) may make possible a reduction of the boundary conditions (7.9c) which involve
Fa andFo. We find fint, proceedinl in the same way as in lPina from (9.4) to (9.6), and observing
that ,.,F';,,-2 is an odd function of ,." that now

(9.8)

for n =2,3.
Evidently, eqn (9.8), together with the edge conditions at infinity, aUows us to conclude that
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for n =2, 3. Therewith, and with the consequences of the first relation in (8.1), we obtain
altogether that

(9.10)

for n =2, 3. We note as a very important consequence of (9.10) the fact·that when I", is an even
function 0/ ", which is the case when s(,,) is even, then the integral terms on the right vanish
for n =2 and we have a boundary condition for Fi'2 as well which is free of any reference to the
edge-zone solution contribution.

EXPANSIONS FOR DEFLECTION. AXIAL
BENDING MOMENT AND TRANSVERSE SHEAR STRESS RESULTANT

In order to see the possibility of determining Mx and Q, and also V, for the conventional
displacement boundary condition case of an ,,-independent ii.r upto terms of relative order p,
solely on the basis of a determination of the interior solution contribution, we rewrite our earlier
expressions for these quantities as follows.

On the basis of eqns (6.22) and (7.1),

(l0.1)

On the basis of (6.25), (6.26) and (7.1), in conjunction with eqns (8.1) and (8.2) for the gin and
eqns (9.1) for the len

00.2)

Q =-j(l!:i:a {F7:,+p l12 F7J+ p [Ff2- (~~- JI) ~o +3 1; Jl2f' Fe<> d~] +... }.
00.3)

We note that it will be possible to determine V, ·Mx and Q, upto terms of relative order p,
soley on the basis of a consideration of the interior solution contributions Fio, Fil and Fi2' to the'
extent that it is possible to determine these functions without explicit consideration of the
edge-zone solution portion, as discussed in the preceding section, and to the extent that F", and F.1

tum out to vanish altogether.
The same conclusions apply insofar as the determination of the stiffness coefficients KfI(J,

K Vtl and K tl is concerned, inasmuch as we have that

when V(O) = 0, and

KfI(J = Mx(O)/{J, K Vtl =- Q(O)/(J, (l0.4)

when Q(O) =ot.

00.5)

EXPANSIONS FOR STRESSES
Introduction of the series expansions (7.1) into eqns (6.23) and (6.24) gives as expansions for

the stresses ax, ", a" up to terms of relative order p

_E8· 1I2t •••••
ax - ~1 [g.o +P ,g.1 + gio) +P(g.2 +gil- "'eo) +... J,-JI

tNote that (10.4) and (lOS) are consistent with (4.1) and (4.2) in the light of the definina relation·(6.16) for (iI.

(11.1)
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iT, =lIO'x + E~ [pl/2Fio + P(F;1 + F.,,) + ... ],

(11.2)

(11.3)

We note that, in contrast to the results for deflection, axial moment and transverse resultant,
the distribution of Itress in the shell will, for the general case, be such that edge zone
contributions come out to be of a higher order of mqnitude than interior region contributions.
This is not so for the "exceptional" cases for which g." and g,l vanish identicaUy. The
significance of this distinction will become apparent in our discussion of the exceptional case of
an 11-independent ".n in comparison with the case where ii. r is assumed to be a quadratic
function of 11.

SOLUTION OF INTERIOR AND EDGE·ZONE
DIFFERENTIAL EQUATIONS

Det.ermination of the interior solution contribution, in accordance witheqns (8.1) and (8.2),
is the same as in the earlier work concerned with this contribution only[t]. We find, upon taking
account once for all of conditions for ~ =00, with 4m 4 =3(1- ,,2), that

and

F;" = (A" cos m~+ B" sin m~) e-m
f ; n = 0,1, (12.1)

F;" =(A" cos m~+ B" sin m~) e-mf
- (~~ - 2,,) 16~4 Fi,,-2; n = 2, 3, (12.2)

with the associated functions gill followil1l from the above in accordance with (8.1) and (8.2).
.Having F;" and gil" as indicated above we now tum to the determination of Fill and g"., for

n =0, 1, 2, 3, in accordance with eqns (7.4H7.8). Writing as before as ditlerential equations for
gill and F"., the set

g"~ + a 2g',,, + F';" =0; n = 0, 1,

g"~ + a 2g',,, + F';" = g;"-2 -11F';,,-2; n = 2, 3,

(12.3)

(12.4)

we take account of the first relations in (7.4) and (7.S), in conjunction with the conditions for
~ = 00, so as to establish as a system of three boundary conditions for 11 = j: 1,

g".(t, j: 1) = 0, (12.5)

with the presence of the terms F'...W in (12.3) and (12.4) making it possible to satisfy the three
conditions in (12.5), when without these terms the first condition (12.5) would rule out
significant portions of the solutions of (12.3) and (12.4).

To see that this is in fact so we write (12.3) and (12.4) in the ditlerentiated form

... 2'"
g." +a gill =0; n =0,1, (12.6)

(12.7)

and determine first the solution of (12.6).
We find, by separation of variables, that eqn (12.6) has particular solutions

(12.8)

where CI, C2, D, A and p. are arbitrary constants. Satisfaction of the three boundary conditions
(12.5) requires that these arbitrary constants satisfy the relations

D sin,.,. = O. (12.9)
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The conditions for non-trivial solutions in (12.9) are

tan A=A, sin IL =0,

919

(12.10)

for all positive roots A=A/ and IL =ILt for j,k =1,2,3, .... It is evident that the functions sin
ILt'" form an orthonormal system, such that every integrable 'odd function of ." in the interval
-1 < ." < 1 may be expanded in terms of them. Additionally, it can be shown that the set

tIJ. =cosAj - cosA;'7
I Aj cos Aj

(12.11)

also forms an orthonormal system, in such a way that every integrable even function 1(.,,), in
- 1<." < 1, with the additional property f~1 I d." =0, can be expanded in terms of themt.

We use the above properties to construct the series solution

..
g", =~ C",lP/(.,,)e-AjS

- +Du(sinp.t.,,)e-~
J.~I

(12.12)

for n =0, 1.
Before proceeding to the analogous solution of (12.7) we return to eqn (12.3) in order to

establish, with the help of the conditions F",(ao) = F~(ao) = 0, as solution F",(t') which is
associated with g.. in (12.12),

.
F.. =- (12 I Ail C;. e-AjS

-;
I-I

n =0, 1. (12.13)

(12.14)

We now consider eqn (12.4) where it remains to determine the appropriate particular
solution corresponding to a r.h.s. which can be seen, with the help of (12.11HI2.13), to be of
the form

.~ C/It-2 (sin A!" + A;'7) e-AjSo + Du-2 (ILt cos ILt"') e-~-.
cos I\j

We find that a particular solution of (12.4) with the above expression in place of the original
r.h.s., which also satisfies the three boundary conditions (12.5), is such that altogether

~ (C () -A6I_ D' -~O) ~ C (!l." cos Am sin Am) -,.tl/-
g",=~ /ltlPj'" e ,.. + pSlDlLt."e +~ jIr-2 '-2' '-2'" e

Ilj IlJ cos Ilj Il/SIDllj

+ 1~ n (. cos #At" - cos Pt) -,.tlJo-2~ Ub-2 ." SID ILt'" - e ,
ILt

and

It now remains to determine the constants of intesration C". and .0.. in conjunction with, or
preferrably subsequent to, the determiaation of the constants All and BII in the interior solution
portion Fin as given by (12.1) and (12.2).

DERIVATION OF BOUNDARY CONDITIONS
FOR DETERMINATION OF CONSTANTS I~ ....

We begin by recalling that the complete system (7.9H7.11) of conditions at the edge
Ee =Ej =°of the shell had been reduced, insofar as possible, to a system of conditions for the

tWe note that it is this ortboloDality propeny of the fUDctions ~I whicb is responsible for the advantqes of the present
solution of the aeneral problem. in complrison with the solution of the c:orrespondins problem for the isotropic sbell.



920 S. NAIR and E. REISSNER

Fin alone, consisting of eqns (9.2), (9.3), (9.7) and (9.10). A characteristic of these conditions is
that in them the effect of the edge-zone solution contribution manifests itself through the
presence of certain definite integrals with respect to TI of g*,,(~, TI), but without appearance of
the g~n themselves. Consequently, these conditions do not contain those elements of the
complete system of edge conditions (7.9H7.1l) which are required for a determination of the
series coefficients Cjn and Da in gill'

A re-inspection of eqns (7.9H7.1l) makes it clear that the remaining supplementation of the
boundary conditions (9.2), (9.3), (9.7) and (9.10) must come from eqns (7.9), and not from (7.10)
and (7.11).

We obtain the first of the remaining transformed conditions by introducing (9.7a) into (7.9a)
and by eliminating F~(O) from this relation by considering that f!1 g~ dTl =O. This gives

(13.1)

We finally introduce F'j,,(0) from (9.10) into (7.9<:) and consider that here f!1 g~ d'1 = 0, and
gl,,-2(O, TI) =(1/2)(1- '1) F7n-iO). Therewith eqn (7.9c) becomes

Having eqns (13.IH13.3), in conjunction with eqns (12.12) and (12.13) for g.. and Fill, we
are now in a position to arrive at some general conclusions, without additional analysis. To wit

(1) The functions g~1 and F~I will vanish identicallY, for all edge conditions cases here under
consideration.

(2) The functions g. and F., will vanish identically for the special case s('1) = I, but will
otherwise have a domiaant effect in eqns (II.IHIIJ) for the distribution of stress, and a direct
effect of relative order pl/2 on the values of the deflection V, in accordance with eqn (10.l), as
weU as an indirect effect of relative order pl/2 on M% and Q. in accordance with eqns (10.2),
(10.3) and (9.2b).

(3) The functions g~2 and Fd will make a contribution of relative order p on stresses, in
.accordance with (11.1H 11.3) but will make no such contribution to V, M% and Q.

THE CASE OF A UNIFORM EDGE ROTATION
We assume now, as in [4), an axial-edge displacement ii =-/3,,(r- a), giving ii.r =-/3" and,

in accordance with (6.16),13 = - (3/4) (-/3,,) (4/3) =13" and therewith, in accordance with (6.15),

s =I,

and then, as discussed in the preceding section

(14.1)

g., = 0, F",=O. (14.2)

With (14.2), and with g~1 =0 and F~I =0, we have, from (9.2), (9.3), (9.7) and (9.10) as edge
conditions for the interior solution contribution

(14.3)

together with

for the case YeO) = 0, and

F/:(O) =FT.(O) =F7i(O) =F7'lCO) =0

(14.4)

(14.5)
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for the case Q(O) =0, with eqn (14.3), together with (14.4) or (14.5), to be used for the
determination of the constants of integration All and BII in (12.1) and (12.2).

We omit the elementary calculations leading to the appropriate values of the All and BII •

With their help there follows

(14.6)

(14.7)

for the case Q(O) =0, and

(14.8)

(14.9)

for the case V(O) .. 0 where, it is recalled, 4m 4 = 3(1- Jl2) and p = cia.
We note, specifically, that the results in (14.6HI4.9) have been obtained without deter

mination of any edge-zone solution contribution and that furthermore the stiffness coefficients
KIIII and Kv, which are associated with (14.8), in accordance with (10.4), as well as the
coefficient K, associated with (14.7) in accordance with (10.5) are consistent with our earlier
bound results in [4], upon specializing these so as to correspond to the limiting-type assumption
of a medium unable to experience transverse normal strains.

Having determined the Fill, we may now obtain the here leading terms lez and Fe2 of the
edge-zone solution portion of the complete solution of the problem from eqns (12.14) and
(12.15), with Cp =0 and Dp = 0, in conjunction with the boundary condition (13.3) which now
reduces to the form

(14.10)

or, equivalently, to

(14.11)

in the interval - 1< T/ < 1. The orthonormality properties of the functions lpj and sinp.kT/ then
give

and therewith

(14.13)

A consideration of (14.5) now gives that le2 vanishes throughout, just as I .. and lelt for the
case Q(O) =O. For the case V(O) =0 the function Fioo with FiD(O) =1 and FiD(O) =0, gives the
relation F:(O) =2m 2 for the last factor in the expression for Id'
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Having determined g-z it becomes possible to evaluate the distribution of stress in the shell,
in accordance with eqns (ll.1HI1.3), with these equations reducing, for the present problem to
the form

(14.14)

with a corresponding expression for Ufo We see once again that the "elementary" interior
contribution in Us (as wen as in u,) dominates the supplementary edge zone contribution. At the
same time the edge zone contribution is of the same order of mapitude as the interior
contribution insofar as the transverse shearing stress f' is concerned. We note, in particular, the
possibility of writing, on the basis (14.14) and (14.10), as expression for the edge shear
distribution for the case V(O) =0

(14.15)

with the second term inside the braces representina the edge zone effect, which bas the
expected property of making no contribution to the shear stress resultant Q.

A CASE OF NON·UNIFORM EDGE ROTATION
We now consider, as an example for which the results of the standard two-dimensional shell

theory are complemented in an essential way by three-dimensional couiderations, the case for
which the axial edae ditplacetneDt is prescribed in the form

[
k (r- a)J]

"=-(10 (r-a)+'rcr- ,

and therewith, in accordance with (6.16) and (6.15)

(1 =- (10 ( 1+j k),
_ 1+k7z 2

9(")- 1+k/S'

(15.1)

(15.2)

We can now, as before, determine the first term of the interior solution contribution, with
the help of the edge conditions

Fio(O) =1, Fio(O) = 0 or F~(O) = 0 (15.3)

which fonow from (9.2&) and (9.7a), depending on whether V(O) =0 or Q(O) =0 is prescribed,
and we note that this determination does incorporate information on the nature of the shape
functions in (15.1), by way of the defining relation (15.2) for (1.

Introduction of g., from eqn (12.12) into the relation

which follows from (13.1) in conjunction with (15.2) now gives

(15.4)

Dt., = o. (15.5)

Having g_ and gltH and recalling that g.. =0 for all cases, we now have as expressions for
stresses, upto and includiDl terms of relative order pll2,

_ E8 . 1/2' - E~
US - ~(g.o + P g;o), f' =1- v 6'." (15.6)
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as wen as u, = 110'% +EfJp 1/2Fio where, notably, all components of stress are, within the narrow edge
zone, of a higherorderof magnitude than the expected stresses associated with the interior solution
contributions gio and Fio•

We omit listing explicit formulas for stresses, and instead consider eqns (10.1HI0.3) for V,
M" and Q, where we note that evaluation of the contributions of relative order p112 and p
involves the relations

4ak/3 1 L'" 4a2k/3 I
F",,(O) = - 1+ kl5 ~ Af' 0 F"" d~ =- 1+ kl5 ~ At· (15.7)

Upon evaluation of (10.1HI0.3), we now obtain in generalization of eqns (14.6HI4.9)

M,,(O) 8 I(C { P [3E ( 4Okl3 ~ I) If] }ecr=2;;jJ'I a I-~ 200 1-I+kI5~At -4 + ... (15.9)

when Q(O) =O. and

(15.10)

~ ~./ { i!:. I( E) 4k ~ 1 ~ [3E ( 5k13 ~ I) If] }Ec =- m a I + m 'I 30 1+ kl5 ~ Af - m sa I + I + kl5~ At + '2 + ...
(15.11)

when V(O) =O.
In order to evaluate (15.8HI5.11), we note that with the successive roots AJ" 4.49, 7.72,

10.90, 14.07, 17.22,20.37,23.52,26.67,29.81,32.99, (j + (1/2» 7f, ••• of eqn (12.10) the two sums
of negative powers of AJ come out to be

(15.12)

Insofar as the interpretation of eqns (15.8HI5.11) is concerned, it should be noted that the
leading terms on the right may be considered as equivalent to the consequences of ordinary thin
shell theory, in conjllnction with the soilltion 0/ the problem 0/ how to introdllce an appropriate
representation 0/ the displacement condition (15.1) into this theory. Additionally, we find that
while the effect of transverse shear deformability and of cross-sectional width changes comes
out, as expected, to be of relative order p, the effect of the ,.,2-term in ii., comes out to be of order
pll2, with the numerically largest values of these correction terms resulting upon letting k tend
to infinity, with a finite limiting value of Pok.

To obtain an impression of the numerical consequences of replacing a linear distribution
i1 =Ilo(r- a)/c by a pure cubic distribution i1 =Ilo(r- a)31c3we set in eqns (15.8HI5.11) k =co

and P=- Pok/5 =31l0/5c. Therewith, and with eqns (15.12), there follows

V(O) ..!. { i!:. I( E ) P [ 3E If]}v(ca)-2m 1+0.3 m V 30 -~ 200(1+0.2)+4

M,,(O)-6 '(E.) {1-~ [~(1-0.2)-~]}ecr 2m 'I a m 200 4

when Q(O) =0, and

M,,(O)_~ 1(E.){1+0.15~ 1(.E..)_~(9E +~)}
~ m 'I a m 'I 30 m 200 4

(15.13)

(15.14)

(15.15)
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Q(O) ... _~ £. {1+ 0.3 P1/2 I (.E..) _~ [3E (l + 0.025)+!]}
Ee m a m 'V 30 m 50 2

(15.16)

when V(O) = O.
As might be expected, the shape correction terms with p1/2 come out to be numerically quite

significant for moderately thin shells, say for p = 0.1. Additionally, due to the change from a
linear to a cubic edge displacement distribution a significant modification of the terms with p, via
the additive terms :to.2 and 0.025, is seen to occur in some of the above expressions.
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